0=-4(n^2-25n+45)

Simple and best practice solution for 0=-4(n^2-25n+45) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4(n^2-25n+45) equation:



0=-4(n^2-25n+45)
We move all terms to the left:
0-(-4(n^2-25n+45))=0
We add all the numbers together, and all the variables
-(-4(n^2-25n+45))=0
We calculate terms in parentheses: -(-4(n^2-25n+45)), so:
-4(n^2-25n+45)
We multiply parentheses
-4n^2+100n-180
Back to the equation:
-(-4n^2+100n-180)
We get rid of parentheses
4n^2-100n+180=0
a = 4; b = -100; c = +180;
Δ = b2-4ac
Δ = -1002-4·4·180
Δ = 7120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7120}=\sqrt{16*445}=\sqrt{16}*\sqrt{445}=4\sqrt{445}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{445}}{2*4}=\frac{100-4\sqrt{445}}{8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{445}}{2*4}=\frac{100+4\sqrt{445}}{8} $

See similar equations:

| 4+x/8=3/4 | | 0.085x+0.10(15250-x)=1411.75 | | x=12/8 | | 35=-4x15 | | x+3x-8-2x=1/2x+6 | | 3x+4/9=x+3/3 | | -2x+10=5x+45 | | 85x+100(15250-x)=1411750 | | y-(-6)=5/7(×-1) | | -3+x÷2=1,5 | | -6x+4=x+32 | | 2-2.5n=3n+16 | | 70+.30x=20+.80x | | 180=100n-4n^2 | | a/5=17/3 | | -6x-6=7x+137 | | x-3+6=-9 | | 3.38=r-9.76 | | x2+175=0 | | 4x^2+8x+7=5 | | 31.20=6g+3.96 | | 7y+5=6y=11 | | 6x-10=7x-15 | | 21+6x+58=13x-5 | | 4=64^w | | x+4=7x-50 | | 7x+1+29=11x+6 | | 5m^2-40m=0 | | 6x-4+30=7x+17 | | 16+x+8=20 | | 5x-5+55=11x+8 | | 8a-3=5(a+7+3a |

Equations solver categories